Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Polymers (Basel) ; 16(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38399881

RESUMO

Medical device-associated infection remains a critical problem in the healthcare setting. Different clinical- or device-related methods have been attempted to reduce the infection rate. Among these approaches, creating a surface with bactericidal cationic functionality has been proposed. To do so, a sophisticated multi-step chemical procedure would be needed. Instead, a simple immersion approach was utilized in this investigation to render the titanium and polypropylene surface with the quaternary ammonium functionality by using a mussel-inspired novel lab-synthesized biomimetic catechol-terminated polymer, PQA-C8. The chemical oxidants, CuSO4/H2O2, as well as dopamine, were added into the novel PQA-C8 polymer immersion solution for one-step surface modification. Additionally, a two-step immersion scheme, in which the polypropylene substrate was first immersed in the dopamine solution and then in the PQA-C8 solution, was also attempted. Surface analysis results indicated the surface characteristics of the modified substrates were affected by the immersion solution formulation as well as the procedure utilized. The antibacterial assay has shown the titanium substrates modified by the one-step dopamine + PQA-C8 mixtures with the oxidants added and the polypropylene modified by the two-step scheme exhibited bacterial reduction percentages greater than 90% against both Gram-positive S. aureus and Gram-negative E. coli and these antibacterial substrates were non-cytotoxic.

2.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499133

RESUMO

For the effective clinical antibacterial application of biomaterials, such as for wound management and tissue repair, the biomaterials need to show proper antibacterial capability as well as non-cytotoxicity. Furthermore, the material needs to have suitable mechanical characteristics for further medical use. Chitosan hydrogel is a potential candidate for various antibacterial biomedical applications due to its amine functionalities that lead to antimicrobial characteristics. Nevertheless, its antimicrobial capability is dependent upon the degree of protonation of amine groups caused by the pH value. Moreover, its mechanical compressive strength may not be high enough for clinical use if not chemically or physically crosslinked. This study utilized a novel chemical crosslinker, mercaptosuccinic acid, to improve its mechanical characteristics. The natural antibacterial agent, cinnamaldehyde, was grafted onto the crosslinked chitosan to improve its antimicrobial capability. Meanwhile, to take advantage of the thiol functionality in the mercaptosuccinic acid, the bactericidal silver nanoparticles were incorporated through silver-thiol covalent bounding. NMR analyses indicated the chitosan was successfully mercaptosuccinic acid-crosslinked and grafted with cinnamaldehyde at different ratios. Combined the results from the mechanical assessment, swelling experiments, antimicrobial assessment, and cytotoxicity assay, the chitosan hydrogel with the highest crosslinked degree and grafted with cinnamaldehyde and silver nanoparticles is of great promise for further clinical uses.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/química , Hidrogéis/química , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Tiomalatos , Aminas
4.
Polymers (Basel) ; 13(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301078

RESUMO

Reducing microbial infections associated with biomedical devices or articles/furniture noted in a hospital or outpatient clinic remains a great challenge to researchers. Due to its stability and low toxicity, the N-halamine compound has been proposed as a potential antimicrobial agent. It can be incorporated into or blended with the FDA-approved biomaterials. Surface grafting or coating of N-halamine was also reported. Nevertheless, the hydrophobic nature associated with its chemical configuration may affect the microbial interactions with the chlorinated N-halamine-containing substrate. In this study, a polymerizable N-halamine compound was synthesized and grafted onto a polyurethane surface via a surface-initiated atom transfer radical polymerization (SI-ATRP) scheme. Further, using the sequential SI-ATRP reaction method, different hydrophilic monomers, namely poly (ethylene glycol) methacrylate (PEGMA), hydroxyethyl methacrylate (HEMA), and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), were also grafted onto the polyurethane (PU) substrate before the N-halamine grafting reaction to change the surface properties of the N-halamine-modified substrate. It was noted that the chains containing the hydrophilic monomer and the polymerizable N-halamine compound were successfully grafted onto the PU substrate. The degree of chlorination was improved with the introduction of a hydrophilic monomer, except the HEMA. All of these hydrophilic monomer-containing N-halamine-modified PU substrates demonstrated a more than 2 log CFU reduction after microbial incubation. In contrast, the surface modified with N-halamine only exhibited significantly less antimicrobial efficacy instead. This is likely due to the synergistic effects caused by the reduced chlorine content, as well as the reduced surface interactions with the microbes.

5.
Colloids Surf B Biointerfaces ; 202: 111674, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33690062

RESUMO

Although considerable efforts have been made to vary the alkyl chain length in the quaternary ammonium compounds (QACs) for optimizing the antibacterial activity, only few researchers have systematically investigated the combinatory effects of alkyl chain length and another acryl monomers with the different chemical configuration on the antibacterial activity of the modified substrate. In this study, by surface grafting of various copolymeric brushes, different modified cotton substrates were prepared by surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization reaction for exploring the effects of alkyl chain length of QACs and the fluorine content on antibacterial and anti-microbial adhesion characteristics. The quaternized monomers used were prepared by quaternization of 2-(dimethylamino) ethyl methacrylate (DMAEMA) with 1-bromooctane (DMAEMA + 8), and 1-bromopropane (DMAEMA + 3). The fluoro-containing monomer was 2,2,2-Trifluoroethyl methacrylate (TFEMA). Ethyl methacrylate (EMA) was also used for comparison. Results have shown that the optimal antibacterial and anti-microbial adhesion characteristics were noted on the substrates grafted with DMAEMA + 8 and TFEMA. This can be attributed to the enhanced degree of surface quaternization due to the hydrophobic interactions between the grafted TFEMA and DMAEMA + 8 chains, leading to an increase in antibacterial efficacy of modified cotton substrates.


Assuntos
Compostos de Amônio , Flúor , Antibacterianos/farmacologia , Metacrilatos , Polímeros , Compostos de Amônio Quaternário/farmacologia
6.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445549

RESUMO

Styrenic thermoplastic elastomers (TPEs) consist of styrenic blocks. They are connected with other soft segments by a covalent linkage and are widely used in human life. However, in biomedical applications, TPEs need to be chemically hydrogenated in advance to enhance their properties such as strong UV/ozone resistance and thermal-oxidative stability. In this study, films composed of sulfonated hydrogenated TPEs were evaluated. Hydrogenated tert-butyl styrene-styrene-isoprene block copolymers were synthesized and selectively sulfonated to different degrees by reaction with acetyl sulfate. By controlling the ratio of the hydrogenated tert-butyl styrene-styrene-isoprene block copolymer and acetyl sulfate, sulfonated films were optimized to demonstrate sufficient mechanical integrity in water as well as good biocompatibility. The thermal plastic sulfonated films were found to be free of cytotoxicity and platelet-compatible and could be potential candidates in biomedical film applications such as wound dressings.

7.
J Mech Behav Biomed Mater ; 112: 104062, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891975

RESUMO

The adipose-derived stem cell has been used in various regenerative medicine research due to its multiple differentiation capabilities. Developing a stable and quick approach for the differentiation of stem cells is a critical issue in tissue regenerative field. In this investigation, rat adipose-derived stem cells (rADSCs) were seeded onto the type I collagen/transforming growth factor ß1 (TGF-ß1) immobilized polydimethylsiloxane (PDMS) substrate and then combined with short term dynamic stretching stimulation (intermittent or continuous stretching for 6 h) to induce the rADSCs chondrogenesis differentiation using the induction medium without growth factors added in vitro. Via regulating the extracellular chemical- and mechano-receptors of the cultured rADSCs, the chondrogenic differentiation was examined. After 72 h of static culture, proteoglycan secretion was noted on the surfaces modified by collagen with or without TGF-ß1. After different stretching stimulations, significant proteoglycan secretion was noted on the surface modified by both collagen and collagen/TGF-ß1, especially after the intermittent stretching culturing. Nonetheless, genetic expression of the chondrogenic markers: SOX-9, Col2a1, and aggrecan, instead, were dependent upon the surface grafted layer and the stretching mode utilized. These findings suggested that the surface chemical characteristics and external mechanical stimulation could synergistically affect the efficacy of chondrogenic differentiation of rADSCs.


Assuntos
Condrogênese , Fator de Crescimento Transformador beta1 , Animais , Diferenciação Celular , Células Cultivadas , Colágeno , Ratos , Células-Tronco
8.
J Biomater Sci Polym Ed ; 31(16): 2060-2077, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32643548

RESUMO

Microbial adhesion reduction as well as platelet compatibility improvement have been suggested as the key requirements for developing blood-contacting synthetic biomaterials. Surface grafting of hydrophilic polyethylene glycol chains or alkyl chains with zwitterionic terminal ends has been proposed for reducing microbial or platelet adhesion. Nonetheless, none has been reported to incorporate both polyethylene glycol and zwitterionic terminal functionality on the same surface-grafted alkyl chain. In this investigation, a novel surface modification scheme was reported for grafting zwitterionic alkyl chains with or without polyethylene glycol as the spacer. It was noted the bacterial adhesion reduction capability on the zwitterionic modified surface was dependent upon the use of polyethylene glycol spacer or not and the strain of microbe tested. Besides, the zwitterionic modified ones all showed greater antimicrobial adhesion capability than the surface modified with polyethylene glycol alone. On the other hand, significantly reduced platelet adhesion and activation were found, but with no statistical differences noted among the polyethylene glycol-modified surface and zwitterionic ones, with or without polyethylene glycol spacer. These suggested that the use of polyethylene glycol spacer on the zwitterionic terminated surface could further enhance the antimicrobial adhesion against gram-negative bacterial while still keeping its platelet compatibility.


Assuntos
Anti-Infecciosos , Polipropilenos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Betaína/análogos & derivados , Materiais Biocompatíveis/farmacologia , Adesividade Plaquetária , Polietilenoglicóis/farmacologia , Polipropilenos/farmacologia , Propriedades de Superfície
9.
Polymers (Basel) ; 12(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549392

RESUMO

Hydrogenated styrenic block copolymers (HSBCs) have been used in medical tubing for many years due to their high clarity, flexibility, kink resistance, and toughness. However, when it comes to blood storage applications, HSBC compounds' market has been limited because of their high hydrophobicity, which may trigger platelet adhesion when contacting with blood. HSBC needs to be physically or chemically modified in advance to make it blood compatible; however, HSBC has strong UV/ozone resistance, thermooxidative stability, and excellent processing capability, which increases the difficulty of the chemical modification process as unsaturated dienes has been converted to saturated stable midblocks. Moreover, medical HSBC-containing compounds primarily make up with the non-polar, hydrophobic nature and benign characteristics of other common ingredients (U.S. Pharmacopeia (USP) grades of mineral oil and polypropylene), which complicates the realization of using HSBC-containing compounds in blood-contacting applications, and this explains why few studies had disclosed chemical modification for biocompatibility improvement on HSBC-containing compounds. Sulfonation has been reported as an effective way to improve the material's blood/platelet compatibility. In this study, hydrogenated tert-butyl styrene (tBS)-styrene-isoprene block copolymers were synthesized and its blends with polypropylene and USP grades of mineral oil were selectively sulfonated by reaction with acetyl sulfate. By controlling the ratio of the hydrogenated tBS-styrene-isoprene block copolymer in the blend, sulfonated films were optimized to demonstrate sufficient physical integrity in water as well as thermal stability, hydrophilicity, and platelet compatibility.

10.
Mater Sci Eng C Mater Biol Appl ; 112: 110964, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409092

RESUMO

The adipose stem cell is a potential candidate for the autologous chondrocytes repairing approach because of the abundance of fat in the animal body and its versatile differentiation capability. In this study, rat adipose stem cells (rASCs) were seeded into anti-oxidative N-acetylcysteine (NAC) grafted polyurethane (PU) scaffold and then combined with short dynamic compressive stimulation (24 h) to induce rASCs chondrogenesis differentiation in vitro. The inner pore surface of the PU scaffold was first modified via alginate and type I collagen to promote rASCs adherence. The modified layers crosslinked by genipin showed outstanding stability after ultrasonic treatment, indicating the modified layers were stable and can keep the cells adhesion well during dynamic compressive stimulation. After inner pore surface modification and 10 mM NAC grafting, the PU scaffold-A-C-G (graft 10 mM NAC) has shown the best proliferation efficiency with homogeneous cell distribution after 72hr static culture. After short term dynamic compressive stimulation, significant gene expression in chondrogenic markers, Sox-9, and Aggrecan, were noted in both PU scaffold-A-C-G and PU scaffold-A-C-G (graft 10 mM NAC). Considering the cell proliferation efficiency and gene expression, the anti-oxidative NAC grafted PU scaffold combined with short term dynamic compressive stimulation could be useful for cell culturing in stem cell therapy.


Assuntos
Acetilcisteína/química , Materiais Biocompatíveis/química , Poliuretanos/química , Tecido Adiposo/citologia , Agrecanas/genética , Agrecanas/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Iridoides/química , Ratos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
J Biomater Sci Polym Ed ; 31(3): 310-323, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31718510

RESUMO

Creating a surface with anti- or reduced fouling characteristics can lead to a reduction in nonspecific protein adsorption as well as the bacterial adhesion and platelet adhesion/activation that occur as follows. A zwitterionic polymer that consists of both cationic and anionic functionalities have been reported as an effective material to achieve these goals, likely resulted from the strongly-adsorbed hydration layer after being immersed in the physiological environment. In this investigation, a novel beta-thiopropionate-based zwitterionic monomer, 2-ammonio-3-((3-(2-hydroxy-3-(methacryloyloxy)propoxy)-3-oxopropyl)thio)-3-methylbutanoate (DPAMA), was synthesized through a facial process. And then the hydrophobic polypropylene was surface modified with this novel zwitterionic polymer through the surface-initiated atom transfer radical polymerization technique. Surface characterization analyses have been employed to investigate the modified surface properties in each reaction stage. In vitro protein adsorption, bacterial adhesion, and platelet compatibility evaluations have shown the polyDPAMA-modified polypropylene surface has significantly reduced fouling characteristics and good hemocompatibility. Henceforth, this novel zwitterionic polyDPAMA grafting PP and the associated grafting reaction scheme have great potential for future clinical applications.


Assuntos
Incrustação Biológica/prevenção & controle , Polipropilenos/farmacologia , Propionatos/química , Adsorção , Aderência Bacteriana/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Adesividade Plaquetária/efeitos dos fármacos , Polimerização , Propriedades de Superfície
12.
RSC Adv ; 9(13): 7257-7265, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519957

RESUMO

This work describes the synthesis of novel antimicrobial agents consisting of N-halamine and dual quaternary ammonium with different alkyl chain lengths and their antimicrobial applications for PET nonwovens. The antimicrobial agents were grafted onto PET nonwovens via esterification with a crosslinker, 1,2,3,4-butanetetracarboxylic acid (BTCA). The cyclic amide structure in the antimicrobial agents could be easily converted to N-halamine after immersion in a diluted chlorine bleach solution. Variations in surface chemical composition of the modified PET nonwovens were examined by XPS. Antimicrobial activities of the nonwovens/fabrics were tested against S. aureus (Gram-positive) and E. coli (Gram-negative) strains. Systematic investigation showed the antibacterial activities were dependent upon the alkyl chain length. The synergism of N-halamine and dual quaternary ammonium could lead to significant antimicrobial activity with inactivation of up to 90% of S. aureus and E. coli after 10 minute contact. This work suggested that the novel composite biocides with N-halamine and dual quaternary ammonium groups and the associated surface modification methods could be of use for further developing antimicrobial nonwoven applications.

13.
Mater Sci Eng C Mater Biol Appl ; 80: 584-593, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866204

RESUMO

Titanium (Ti) and its alloys possess mechanical properties that are desirable in many biomedical applications compared to other metals. Furthermore, the native metal oxide layer that prevents further oxidation is also known to be biocompatible. However, clinical findings have shown that titanium and its alloys are prone to adverse bioreactions such as platelet adhesion and activation which could lead to thrombogenic complications. It has been found that surfaces modified with fluorocarbons could reduce the degree of both platelet adhesion and activation. Nevertheless, direct fluorocarbon deposition onto titanium substrates would require significant technical efforts. Instead, this research utilized a facile coating process with novel copolymers containing 2,2,2-trifluoroethyl methacrylate (TFEMA) and vinylphosphonic acid (VPA) to modify the titanium surface, giving the surface lower surface energy and higher hydrophobicity, significantly reducing the thrombus formation while exhibiting good cytocompatibility. The anchorage group, phosphonic acid provided by VPA, can be covalently bound to the oxide surface of titanium metal. Via free radical polymerization, VPA and TFEMA formed copolymers with different hydrophobicity were then used to modify titanium substrates, on which a series of surface characterization, in vitro platelet adhesion tests, and cytotoxicity assays were performed. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis of the copolymers and the modification of Ti substrates. The platelet adhesion tests showed significantly reduced amount of adherent platelets on certain copolymer-modified Ti substrates with low degrees of activation. The in vitro cytotoxicity assays further highlighted that the modifications conducted on Ti does not induce cytotoxicity.


Assuntos
Fluorocarbonos/química , Plaquetas , Adesividade Plaquetária , Propriedades de Superfície , Titânio
16.
Mater Sci Eng C Mater Biol Appl ; 62: 338-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952432

RESUMO

The magnetic electrospun mats were lately established as an innovative biomaterial for hyperthermic cancer treatment. Unlike those surface-modified magnetic nanoparticles that may not firmly adhere onto the tumor for long-term duration, the magnetic mats with nanofibrous structure can promote cell adhesion and kill the tumor directly within an alternating magnetic field. However, most magnetic electrospun mats were fabricated using non-biodegradable polymers and organic solvents, causing the problems of removal after therapy and the suspected biotoxicity associated with residual solvent. Alginate (SA) was utilized in this investigation as the main material for electrospinning because of being biodegradable and water-soluble. The alginate-based electrospun mats were then treated by an ionic or a covalent crosslinking method, and then followed by chelation with Fe(2+)/Fe(3+) for chemical coprecipitation of Fe3O4 magnetic nanoparticles. Significant less cytotoxicity was noted on both liquid extracts from the ionic-crosslinked (Fe3O4-SA/PEO) and covalent-crosslinked (Fe3O4-SA/PVA) magnetic electrospun mats as well as the surface of Fe3O4-SA/PVA. In vitro hyperthermia assay indicated that the covalent-crosslinked magnetic alginate-based mats reduced tumor cell viability greater than Fe3O4 nanoparticles. Such magnetic electrospun mats are of potential for hyperthermia treatment by endoscopic/surgical delivery as well as serving as a supplementary debridement treatment after surgical tumor removal.


Assuntos
Alginatos/química , Hipertermia Induzida , Nanopartículas de Magnetita/química , Teste de Materiais , Animais , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Camundongos , Células NIH 3T3
17.
Biosens Bioelectron ; 77: 1086-94, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26556186

RESUMO

The nanopatterning of gold nanoparticle (AuNP) arrays on an indium tin oxide (ITO) electrode using efficient and low-cost methods is described. This process used nanosphere lithography (NSL) encompassing the deposition of monolayered Polystyrene (PS) followed by a convective self-assembly drop coating protocol onto the ITO substrate that further acted as the mask after the AuNP assembly. The results showed that spin-coating allowed AuNPs to follow the contour and adhere to the PS nanospheres. The final products, after etching the PS, generated a highly ordered Au-nanohole array on an ITO substrate. The Au-nanohole arrays on the ITO electrode provided a greater surface area and successfully enhanced the peak current of electrochemical measurements by 82% compared with bare ITO and was used to detect Staphylococcus aureus 16S rRNA hybridization. In contrast to non-templated AuNP structures, the Au-nanohole arrays on the ITO electrode contributed to an optimum sensitivity improvement in DNA hybridization detection by 23%, along with an impressive limit of detection (LOD) of 10 pM. The high specificity of this distinguished structure was also achieved in the hybridization measurements of multi-analyte pathogens. These findings indicate that the combination of PS nanosphere lithography, followed by the spin-coating of AuNPs, leads to an inexpensive and simple engineering process that effectively generates uniform Au-nanohole arrays on ITO, which provides a greater surface area to optimize the electrochemical performance of the DNA biosensor.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanopartículas Metálicas/química , Nanoporos/ultraestrutura , RNA Ribossômico 16S/genética , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Desenho de Equipamento , Análise de Falha de Equipamento , Ouro/química , Impressão Molecular/métodos , RNA Ribossômico 16S/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
PLoS One ; 10(10): e0140128, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444566

RESUMO

BACKGROUND: Inflammasome innate immune response activation has been demonstrated in various inflammatory diseases and microbial infections. However, to our knowledge, no study has examined the inflammasome-dependent pathways in patients with urinary tract infection. Defective or variant genes associated with innate immunity are believed to alter the host's susceptibility to microbial infection. This study investigated genetic polymorphisms in genes encoding inflammasomes and the subsequent released cytokines in pediatric patients with severe renal parenchymal infections. METHODOLOGY: This study included patients diagnosed with acute pyelonephritis (APN) and acute lobar nephronia (ALN) who had no underlying disease or structural anomalies other than vesicoureteral reflux (VUR). Single nucleotide polymorphism (SNP) genotyping was performed in the genes associated with inflammasome formation and activation (NLRP3, CARD8) and subsequent IL-1ß cytokine generation (IL-1ß). PRINCIPAL FINDINGS: A total of 40 SNPs were selected for initial genotyping. Analysis of samples from 48 patients each and 96 controls revealed that only nine SNPs (five SNPs in NLRP3; three SNPs in CARD8; one SNP in IL-1ß) had heterozygosity rates >0.01. Hardy-Weinberg equilibrium was satisfied for the observed genotype frequencies of these SNPs. Analysis excluding patients with VUR, a well-known risk factor for severe UTIs, revealed a lower frequency of the CC genotype in NLRP3 (rs4612666) in patients with APN and ALN than in controls. Correction for multiple-SNP testing showed that the non-VUR subgroup of the APN+ALN combined patient groups remained significantly different from the control group (P < 0.0055). CONCLUSIONS: This study is the first to suggest that the inflammasome-dependent innate immunity pathway is associated with the pathogenesis of pediatric severe renal parenchymal infections. Further investigation is warranted to clarify its pathogenic mechanism.


Assuntos
Imunidade Inata , Inflamassomos/genética , Rim/patologia , Polimorfismo de Nucleotídeo Único , Pielonefrite/genética , Pielonefrite/imunologia , Doença Aguda , Adolescente , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Criança , Pré-Escolar , Feminino , Frequência do Gene , Genótipo , Humanos , Lactente , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Rim/imunologia , Rim/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Pielonefrite/patologia
20.
J Pediatr Surg ; 48(3): e21-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23480943

RESUMO

Hemangiopericytoma is an uncommon tumor that occurs mostly in middle-aged adults. There have been only sporadic case reports of splenic involvement, and in all but one the treatment has been total splenectomy. We present a one-month-old boy with splenic hemangiopericytoma treated with partial splenectomy. This is the youngest case in the literature, and there has been no recurrence noted after two years of follow up.


Assuntos
Hemangiopericitoma , Neoplasias Esplênicas , Hemangiopericitoma/patologia , Hemangiopericitoma/cirurgia , Humanos , Lactente , Masculino , Neoplasias Esplênicas/patologia , Neoplasias Esplênicas/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...